```
nıestion 1
गt yet answered
Marked out of 2.00
```

Calculate the length of trajectory of the body moving through the straight line with velocity $6.5 \mathrm{~m} / \mathrm{s}$ during the time 2.8 s (carry out calculations in SI unit system, inscribe just number into the data field, e.g. 1.23).

Answer:

Question 2

Not yet answered
Marked out of 2.00

A train of length 200 m is moving through the tunnel of length 50 m with a speed of $18 \mathrm{~km} / \mathrm{h}$. Determine the time (in seconds) needed for passing the tunnel (inscribe just number into the data field, e.g. 1.23).

Answer:

Question 3
Not yet answered
Marked out of 2.00

Calculate the moment of inertia of a circular disk relative to the symmetry axis, if the mass of a disk is 9.6 g , radius of the disk is 4 cm (carry out calculations in g. cm^{2}, inscribe just number into the data field, e.g. 1.23).

Answer:

Question 4

Not yet answered
Marked out of 2.00

An object of mass 2 kg in an elevator accelerates downward with acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. Free fall acceleration is equal to 10 $\mathrm{m} / \mathrm{s}^{2}$. Determine the weight of the body (inscribe just number into the data field, e.g. 1.23).

Answer:

Question 5
Not yet answered
Marked out of 2.00

Calculate the period (T), if the number of complete revolutions is 5 and the corresponding time is 8.2 second (carry out calculations in seconds, inscribe just number into the data field, e.g. 1.23).

Answer:

Question 6
Not yet answered
Marked out of 2.00

Equation of plane wave propagating along the direction of x - axis is given by the formula $s=5 \cos (3 \pi t-3 \pi x)$. Determine the wavelength (inscribe just number into the data field, e.g. 1.23):
Answer:

Question 7
Not yet answered
Marked out of 2.00

Determine the temperature (in Celsius) of an ideal gas, if the average translation kinetic energy of molecules is equal to 700 k , where k is the Boltzmann's constant (inscribe just number into the data field, e.g. 1.23):

Answer:

Question 8
Not yet answered
Marked out of 2.00

A standing wave is produced along a string of 100 cm whose ends are fixed. What is the wavelength of the wave if there are 3 nodes between the fixed ends of the string?
Select one:a. 33.3 cmb. 300 cmC. 50 cmd. 20 cme. 40 cm

Question 9
Not yet answered
Marked out of 1.00

The acceleration at any moment of time is called ----- .
Select one:a. constant accelerationb. variable accelerationc. instantaneous accelerationd. average acceleration

Question 10

Not yet answered

Marked out of 1.00

Is it possible to consider the motion of a body along a curvilinear trajectory without acceleration?
Select one:a. Nob. Yes

Question 11
Not yet answered
Marked out of 1.00

Is it true or false: „A common unit of acceleration is the meter per second squared- $\mathrm{m} / \mathrm{s}^{2 "}$

Select one:
True

Question 12
Not yet answered
Marked out of 1.00

The vector of velocity of curvilinear motion is defined as (\vec{r} is radius-vector):

- a. $\vec{V}=d r / d t$b. $\vec{V}=d t / \vec{r}$c. $\vec{V}=d \vec{r} / d t$

Question 13
Not yet answered
Marked out of 1.00

When a vector of magnitude 6 units is added to a vector of magnitude 8 units, the magnitude of the resultant vector will be ----- .
Select one:a. 2 units, 14 units or some value between themb. exactly 14 unitsc. 0 units, 10 units or some value between themd. exactly 2 units

Question 14

Not yet answered
Marked out of 1.00

A satellite moving in a circular orbit with respect to the Earth's center experiences a gravitational force. If the satellite is put into a new circular orbit of a greater radius, how will the gravitational force change?

Select one:a. Gravitational force remains constantb. Gravitational force-decreasesc. Gravitational force-increases

Question 15
Not yet answered
Marked out of 1.00

When a car's speed changes from $30 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$, its kinetic energy ----- .
Select one:a. is increased 2-timesb. is increased 4-timesc. does not changed. is decreased 2 - timese. is decreased 4- times

Question 16

Not yet answered
Marked out of 1.00

The force is a physical quantity, characterized by ----- .
Select one:
a. the direction, modulus and the point of applicationb. the modulusc. the directiond. the point of application

Question 17
Not yet answered
Marked out of 1.00

The force is conservative (potential) if the work done by the force applied on the body depends -----.
Select one:a. on the coordinates of the bodyb. only on the initial coordinate of the pathc. only on the final coordinate of the pathd. only on the initial and the final coordinates of the path

Question 18

Not yet answered
Marked out of 1.00

The moment of inertia of a body of mass (m) with respect to an axis of rotation is:

Select one:

a. $I=m^{2} r$b. $\quad \mathrm{I}=\mathrm{mr}^{2}$C. $I=m / r^{2}$Question 19
Not yet answered
Marked out of 1.00

A 5-kilogram block is suspended by a cord from the ceiling. The force exerted on the block by the cord is most nearly ----- .
Select one:a. 25 Nb. 100 Nc. 50 Nd. 200 N

Question 20
Not yet answered
Marked out of 1.00

Two objects A and B of velocities v_{A} and v_{B} have momentums with equal magnitudes. If $\left|v_{A}\right|<\left|v_{B}\right|$, which of the following is true?

Select one:

a. Mass of object A is greater than mass of object Bb. Mass of object A is less than mass of object Bc. The two objects have equal kinetic energiesd. The two objects have equal massesQuestion 21
Not yet answered
Marked out of 1.00

The object of mass 8 kg was moving with speed of $30 \mathrm{~m} / \mathrm{s}$. After collision the speed equals to $47 \mathrm{~m} / \mathrm{s}$. Define the change in momentum ------

Select one:

a. $136 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$b. $616 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$c. $\quad 12.5 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$d. $36 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$Question 22
Not yet answered
Marked out of 1.00

The work done by the force (F) on displacement (s) is given by the formula:
Select one:a. $A=s / F$b. $A=F s$c. $A=F-s$d. $A=F / s$e. $A=F+s$

Question 23
Not yet answered
Marked out of 1.00

Mechanical waves can be ----- .
Select one:a. only transverseb. transverse and longitudinal, bothc. only longitudinal

Question 24

Not yet answered
Marked out of 1.00

The main quantities characterizing the harmonic oscillations are (select 3 answers):
Select one or more:a. Momentumb. Timec. Amplituded. masse. Periodf. Frequency
Question 25
Not yet answered
Marked out of 1.00

Select the units for physical quantities:

wavelength	Choose...
force	Choose...
frequency	
Choose...	
energy	Choose...

Question 26
Not yet answered
Marked out of 1.00

The relationship between the wavenumber and the wavelength is given by the formula:
Select one:
○ a. $k=\lambda / 2 \pi$b. $k=2 \pi / \lambda$c. $k=2 \pi \lambda$

Question 27
Not yet answered
Marked out of 1.00

The absolute temperature (T) is given by an expression:

Select one:
a. T=t-273b. $T=t+372$c. $T=t+273$

Question 28
Not yet answered
Marked out of 1.00

A fixed volume of gas is cooled from $20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$. What is the temperature change, $\Delta \mathrm{T}$ in Kelvin?
Select one:a. 20 Kb. 273 Kc. 293 K

Question 29
Not yet answered
Marked out of 1.00

Match the definitions describing the equilibrium states of an ideal gas:

T=constant	Choose...
$\mathrm{p}=$ constant	Choose...
$\mathrm{V}=$ constant	Choose...

Question 30
Not yet answered
Marked out of 1.00

When the temperature of a body changes by 2 degrees, the amount of heat needed is 2000 joules. The mass of a body is 10 kg . The heat capacity of the body will be equal to -----

Select one:
O. $100 \mathrm{~J} / \mathrm{kg} \mathrm{C}{ }^{\circ}$b. $200 \mathrm{~J} / \mathrm{kg} \mathrm{C}^{\circ}$c. $50 \mathrm{~J} / \mathrm{kg} \mathrm{C}{ }^{\circ}$

Question 31
Not yet answered
Marked out of 1.00

In a given process, 12 joules of heat is added to an ideal gas and the gas does 8 joules of work. Which of the following is true about the internal energy of the gas?
Select one:
a. it has increased by 4 Joulsb. it has not changedc. it has increased by 20 Jouls

Question 32
Not yet answered
Marked out of 1.00

In an isochoric process first law of thermodynamics is expressed by formula (Q is the heat added to the system, A - work done by the system, U - internal energy):

Select one:a. $d Q=-d A$b. $d Q=d A$c. $d Q=d U$d. $d Q=-d U$

