Ouestion 1 ot yet answered Marked out of 2.00	Time left 0:57:35
Calculate the electric force acting on the charged particle if q=1*10 ⁻⁴ C. Electric field structure only value, e.g.1.234). Answer:	rength E= 13332.3 V/m (Inscribe in the field
Question 2 Not yet answered Marked out of 2.00	
The amount of point charge placed into the closed surface is equal to 1 • 10 ⁻⁹ C. Electric more point charges of amount: 33 • 10 ⁻⁹ C and -17 • 10 ⁻⁹ C were added to the surface. De the data field (e.g. 1.234).	e field flux increased m-times when two etermine, and write down the value of m into

Answer:

Question 3	
Not yet answered	
Marked out of 2.00	
Oslaulata the uniform all streats is field stream	
Distance between these points equals 10 cm	oth, when along the field lines potential difference between two points is 0.02 V. (inscribe in the field the value, e.g. 1.234).
Answer:	
Question 4	
Not yet answered	
Marked out of 2.00	
Distance between the plates of the nevellated	eta conscitar in increased 0, timos and the plate area in increased 00 timos

Distance between the plates of the parallel-plate capacitor is increased 8- times and the plate area is increased 20-times, therefore capacitance of the capacitor has increased by the factor K. Determine the value of K (inscribe answer in the data field, e.g.1,234).

Answer:

Question 5	
Not yet answered	
Marked out of 2.00	
Calculate the energy transforme	ed into the heat in resistance of 16 ohm during the time interval 4 s, if the current passing through
is 9 A (inscribe in the field the va	
Answer:	
Question 6	
Not yet answered	
Marked out of 2.00	
Calculate the magnetic flux pass	sing through the loop area of 5 m ² . Magnetic field of 3 T creates the angle of 60 ^o to the line drawn
	loop (inscribe in the field the value, e.g. 1,234).
P - P	
Answer:	

Question 7 Not yet answered Marked out of 2.00	
	<u>y times</u> the magnetic field will be increased in the center of a circled wire carrying a current, if the radius of a times, current through the wire is increased in 20 times (inscribe just the number into the data field, e.g.
Answer:	
Question 8 Not yet answered Marked out of 2.00	
• •	ves in a magnetic field. The magnitude of magnetic field vector (B) decreases 100 times, and the magnitude ased in 6 times. The magnetic (Lorentz's) force exerted on a particle will be increased in times (inscribe data field, e.g. 1.23).
Answer:	

Question	
Not yet ans Marked out of	
-	clic frequency of alternating current equals 125 Hertz and the inductance of the coil equals 2.5 Henry. Calculate the ve reactance of the circuit (inscribe just a number into the data field, e.g. 1.23).
Answe	:
Question	.0
lot yet ans larked out of	
Compl	ete the definition: two point charges attract each other with the force, which is (2 correct answers).
Select	one or more:
_ a.	inversely proportional to the square of distance between them
🗌 b.	proportional to the distance between them
□ C.	directly proportional to the product of their charges
	numericanal to the equate of distance between them
🗌 d.	proportional to the square of distance between them

Question 11	
Not yet answered	
Marked out of 1.00	
The potential difference is defined as a measure of	·
\bigcirc a. the power per unit charge	
\bigcirc b. the work done per unit charge	
\bigcirc c. the electric field per unit charge	
\bigcirc d. the force per unit charge	
Question 12	
Not yet answered	
Marked out of 1.00	

The energy of electric field is (C is the capacitance, q is the charge), select two answers

Select one or more:

- □ a. W=CU²/2
- □ b. W=q²/2C
- □ c. W=q⁄2C
- □ d. W=C²U/2

Question 13 Not yet answered Marked out of 1.00	
Is it true or false: "Electric dipole is the system consisting of <u>two equal point charges of opposite sign, separated by a distance".</u> Select one: O True O False	
Question 14 Not yet answered Marked out of 1.00	
Electric Field Strength is given by an expression (q is the charge): Select one: $a. E = F/q^2$ b. E = F/q c. E = Fq	

Question 15		
ot yet answered		
arked out o	of 1.00	
Form	nula $E=E_0/\epsilon$ defines an electric field in (ϵ is constant quantity):	
⊖ a	a. anisotropic dielectric	
⊖ b.	o. vacuum	
⊖ c.	. homogeneous dielectric	
⊖ d	I. inhomogeneous dielectric	
uestion	1 6	
lot yet ar	nswered	
arked out o	of 1.00	

44 J is	44 J is used to move 4 coulombs through a potential difference of V. What is V?	
Select of	one:	
⊖ a.	11 v	
⊖ b.	40 v	
⊖ c.	48 v	
⊖ d.	176 v	
⊖ e.	1/4 v	

Not yet answered

Marked out of 1.00

Is it true or false: The relation between the polarization vector and electric field vector for isotropic dielectric in SI unit system is given by the formula $\vec{P} = \chi \epsilon_o \vec{E} (\chi$ is the coefficient of polarization).

Select one:

 \bigcirc True

 \bigcirc False

Question 18	
Not yet answered	
Marked out of 1.00	

The resistance R is ----- (S is the area).

Select one:

⊖ a. R=ρS/I

⊖ b. R= I/S

⊖ c. R=pI/S

uestion 19
ot yet answered arked out of 1.00
Ohm's law in differential form is (E is the electric field strength).
Select one:
⊖ a. j=σ/E
○ b. j=E/σ
○ c. j=σE
uestion 20
ot yet answered arked out of 1.00
Is it true or false: "Joule-Lenz law determines the amount of heat liberated in a unit volume of resistor per unit time".
Select one:
○ True
○ False

Question 21 lot yet answered					
Closed	d electric circuit includes a battery and a resistor, define the correct statement:				
⊖ a.	electric charge is generated in resistor				
⊖ b.	electric charges move through the circuit acquiring kinetic energy from the resistor				
⊖ c.	resistor supplies energy				
⊖ d.	battery maintains an electric potential difference across the ends of the external circuit				

Not yet answered

Marked out of 1.00

Which of the following is true: the magnetic field produced by a current in a long, straight wire ----- .

Select one:

- $\bigcirc\,$ a. is directed tangent to field lines circled around the wire
- \bigcirc b. directed radially outward from the wire
- \bigcirc c. is uniform

Question 23	
lot yet answered	
/larked out of 1.00	
	ce acting on a positively charged particle moving from East to West in a magnetic field directed
downward?	
\bigcirc a. directed out of the page	
\bigcirc b. directed into the page	
\bigcirc c. directed to the left	
\bigcirc d. directed to the right	
Question 24	
Not yet answered	
Marked out of 1.00	
In International (SI) System th	e unit of magnetic field vector is:
Select one:	
\bigcirc a. Ohm (Ω)	

- \bigcirc b. Volt (V)
- ⊖ c. Tesla (T)
- \bigcirc d. Ampere (A)

estion 25					
Not yet answered					
ted out of 1.00					
wo parallel wires with the same current (I) exert forces on each other with equal magnitudes. What happens to the magnitude of his force if the value of the current in wires is doubled?					
Select one:					
⊖ a. increased 4 times					
$_{\bigcirc}$ b. The magnitude is doubled					
\bigcirc c. The magnitude is quartered					
⊖ d. The magnitude does not change					
\bigcirc e. The magnitude is halved					

Question 26
Not yet answered
Marked out of 1.00
Which of the following is (are) true about Lenz's law:
(i) It obeys Newton's third Law;
(II) It obeys the conservation of energy;
(III) It may be used to find direction of induced current.
Select one:
⊖ a. (I) and (II) only
⊖ b. (II) ony
\bigcirc c. (I) only
○ d. (I), (II) and (III)
○ e. (I) and (III) ony

Not yet answered

Marked out of 1.00

According to Faraday's law of induction $E=-d\Phi/dt$, define the meaning of Φ :

- \bigcirc a. electric potential
- \bigcirc b. magnetic flux
- ⊖ c. phase
- \bigcirc d. electric strength

Question 28		
Not yet answered		
Marked out of 1.00		
Electric current is called	the alternating current, if	
\bigcirc a. only direction of \bigcirc	current is changing	
\bigcirc b. magnitude and d	irection of current are constant	
$_{igodot}$ c. magnitude and d	irection of current are changing	
⊖ d. only magnitude c	f current is changing	
0, 3	0 0	

Not yet answered

Marked out of 1.00

The root-mean-square (effective) value of the alternating current is equal to:

 $\bigcirc a. \quad I_0 / \sqrt{2}$ $\bigcirc b. \quad I_0 / 2$ $\bigcirc c. \quad 2 I_0$

Not yet answered

Marked out of 1.00

Choose the formula for capacitive resistance (C is the capacitance):

$$\overset{\circ a.}{} R = 1/C \omega \\ \overset{\circ b.}{} R = C \omega \\ \overset{\circ c.}{} R = 2C \omega$$

Question **31**

Not yet answered

Marked out of 1.00

For **LC** circuit the resonant frequency is defined by the formula:

$$\overset{\circ a.}{} \omega = \sqrt{LC} \\ \overset{\circ b.}{} \omega = 1/\sqrt{LC} \\ \overset{\circ c.}{} \omega = \sqrt{L/C}$$

«

The Sample 2