Образец заключительного экзамена

«Инженерная математика 3»

(в каждом задании будут даны 4 ответа, один из которых верный)

- **1.** Даны векторы $\vec{a} = 3\vec{i} 2\vec{j} + \vec{k}$ и $\vec{b} = \vec{3}\vec{i} + 4\vec{j} + 5\vec{k}$. Найти: **a)** их скалярное произведение;
- б) координаты их векторного произведения; в) угол между этими векторами;
- г) площадь треугольника, построенного на этих векторах.
- **2.** Найти значение частной производной $\partial f/\partial x$ в точке (-1;1), если $f(x,y) = 4x^3 + 8xy^2 + y 12$.
- **3.** Найти grad f(1;-2), если $f(x;y) = x^5y^2 + x + 2y^2$.
- **4. а)** Найти скорость движения материальной точки для указанного значения переменной t, если закон движения этой точки описывается векторным уравнением

$$\vec{r}(t) = 2\sin t \,\vec{i} + (1+3t)\,\vec{j} + (t^3 - 4t)\vec{k}, \ t = 0$$
.

- **б)** Найти ускорение движения материальной точки для указанного значения переменной t, если скорость движения материальной точки описывается векторным уравнением $\vec{v}(t) = 2t \ \vec{i} + (4-t^2) \ \vec{j} + (6t+2t^2) \ \vec{k}, \ t=1$.
- **5.** а) Вычислить двойной интеграл по прямоугольной области: $\int_{-1}^{0} \int_{-1}^{1} (x+y+1) dx \ dy$.
 - **б)** Вычислить двойной интеграл по прямоугольной области: $\int\limits_0^1 \int\limits_1^2 2x e^y dy \ dx$.
- **6.** Вычислить дивергенцию $div \ \vec{F}$ векторного поля $\vec{F} = -6x\vec{i} + y^5\vec{j} + z\vec{k}$.
- **7.** Найти ротор $curl\ \overrightarrow{F}$ вектора $\overrightarrow{F} = (x^2 + y^2)\overrightarrow{i} e^x\overrightarrow{j} + xz\overrightarrow{k}$.
- **8.** Найти частное: $\frac{1+2i}{2-3i}$.
- **9.** Вычислить интеграл $\int_C (x^2 y^2) ds$ вдоль кривой $\overrightarrow{r(t)} = 2\cos t \vec{i} + 2\sin t \vec{j}, \ 0 \le t \le \frac{\pi}{4}.$

1

- ${f 10.}$ Найти общее решение линейного дифференциального уравнения первого порядка: ${\bf 8y'}$ ${\bf y}$ = ${\bf 0}$.
- **11.** Найти модуль и аргумент комплексного числа $-1-\sqrt{3}i$.
- **12.** Написать характеристическое уравнение для данного дифференциального уравнения и найти его корни: y'' 4y' + 3y = 0.
- **13.** Найти общее решение дифференциального уравнения $y^{''} 3y^{'} + 2y = 0$.
- **14.** Найти частное решение дифференциального уравнения с данными начальными условиями:

$$y'' - y = 0;$$
 $y(0) = 1;$ $y'(0) = -1.$

- **15.** Найти общее решение дифференциального уравнения y'' + 2y' + 2y = 0.
- **16.** Найти общее решение дифференциального уравнения y'' + y' 2y = 6x 5.